CHINESE国产老熟女_最新亚洲人成无码网站_四虎国产精品永久地址49_国产精品乱码高清在线观看

當前位置:首頁 > 翻譯資源

橡膠特性的測試方法-中英對照

發布時間:2013-1-1      閱讀次數:1810

橡膠特性的測試方法-中英對照

本標準是在依據故有標準D 1415發行的;名稱后面的數字表明最初版本的出版年或,如有修訂版則指修訂版的發行年。
括號里的數字代表最終審批年。上標的希臘字幕ε代表在最終修改或復核時的變更。
本標準已經得到國防部機構批準。
2.2 國際標準:3
1.1 本測試方法涵蓋了硫化或熱塑性橡膠的硬度測試程序。通過在規定尺寸的小球上以(1)使用較小的初始力和(2)使用大得多的尾力所獲得不同透深之間的差異測得硬度。在指定的時間內進行差別滲透并轉化為硬度指標值。
1.2 本測試方法與標準ISO 48在技術上是相似的。
1.3 本標準并未列出全部安全注意事項,如果有其他安全標準,請結合運用。本標準的使用者有義務建立適合的安全和健康條例并在使用之前列出各項常規限制。
2. 參考標準
2.1 ASTM 標準:2
D 1349 橡膠的操作規程—標準的測試溫度
D 1415 橡膠特性的操作方法—國際硬度
D 2240 橡膠特性的測試方法—硬度計硬度
D 4483 橡膠和碳黑制造工業中,測試方法標準的準確性評估
1本測試方法是在ASTM協會D11橡膠及其分會D11.10物理測試權限之下的。
現有的版本審批于2005年8月15日,出版于2005年8月。最初的版本審批于1956年。最新的版本審批于2004年,名為:D 1415–88 (2004)。
2 有關ASTM標準的參照內容可以訪問ASTM網站, 或發郵件至ASTM 客服郵箱有關ASTM標準年鑒信息,請咨詢ASTM網站標準文件概要頁面。
 
ISO 48 橡膠, 硫化的或熱塑性的—硬度的測定 (硬度在 10 至 100
IRHD之間)
3. 測試方法摘要
3.1 在一個平面上,為了適應不同的尺寸,硬度的硫化或熱塑性橡膠樣品給出了以下四種測試程序:
類型S1和S2, 標準硬度測試;
類型M, 顯微硬度測試;
類型L, 低硬度測試;
類型H, 高硬度測試.
3.1.1 類型 S1和 S2 (參考 表 1)—在第6部分所列厚度的樣品使用的標準測試,且適用于硬度在35 IRHD至85 IRHD之間的樣品。也可能適用于硬度在30 IRHD至95 IRHD之間的樣品。
備注  1—在85 IRHD至95 IRHD 和30 IRHD至35 IRHD的硬度范圍內,通過類型S和S1所獲得的硬度值可能與使用類型H或L獲得的值不一致。非重大差異一般可以忽略不計。
3.1.2 類型M (參考 表 1)—顯微硬度測試是類型S1和S2的縮尺表示,它可用于更薄更小的樣品。可用于第6部分所列出的厚度,且硬度在35 IRHD至85 IRHD之間。還可以用于硬度在30 IRHD至95 IRHD之間的樣品。
備注 2—由于表面變化或樣品配置的不同,通過類型M獲得的硬度值可能與類型S1或S2的不同。
3 可從美國國家標準協會獲取(ANSI), 25 W. 43rd St, 4th Floor, New York, NY 10036.
本標準的著作權©歸美國100 Barr Harbor Drive ,West Conshohcken ,PA 19428的ASTM所有。
D 1415 – 05
表1 儀器要求
備注—在類型M的顯微硬度測試中,使用彈簧在測試儀器內緊壓測試件,底部施加的力的數值即為總的成穴力。在成穴力增加0.145N前,底部的力大于這個數字,因此為0.38+0.03N。
球直徑,
毫米
球上次要力,
NA
球上的主要力,
NA
球上的總力,
NA
底部外徑
, mm
底部內徑
, mm
對底部施加的力, NB
類型 S1
2.38 + 0.01
0.30 +0.02
5.23 + 0.01
5.53 + 0.03
20 + 1
6 + 1
8.3 + 1.5
類型 S2
2.50 +0.01
0.29 + 0.02
5.4+ 0.01
5.7 + 0.03
20 + 1
6 + 1
8.3 + 1.5
類型 M
0.395 + 0.005
0.0083 + 0.0005
0.1455 + 0.0005
0.153 + 0.001
3.35 + 0.15
1.00 + 0.15
0.235 + 0.03C
類型 L
5.0 + 0.01
0.3 + 0.02
5.4 + 0.01
5.7 + 0.03
22 + 1.0
10 + 1.0
8.3 + 1.5
類型 H
1.0 + 0.01
0.3 + 0.02
5.4 + 0.01
5.7 + 0.03
20 + 1.0
6 + 1.0
8.3 + 1.5
A 包括儀器的摩擦力
B 該力應在底部實際面積的限制范圍內進行調節,以便樣品的壓力為:30 + 0.5 kPa.
C 當在球上施加全部力時,在底部上的力;當在球上施加次要力時,在底部上的力最小 0.2 N,最大 0.4 N。
3.1.3 類型 L—第6部分中列出厚度的樣品所適合的方法,且硬度在10 IRHD 與35 IRHD之間。 
3.1.4 類型 H—第6部分中列出厚度的樣品所適合的方法,且硬度在85 IRHD 與100 IRHD之間。
3.2 在全部過程中,以國際橡膠硬度(IRHD)計算的硬度都是來源于滲透差異和表或圖,在顯微測試程序中,首先要將滲透差異乘以系數6,但也可直接將儀器調整成為IRHD單位制。
4. 重要性與使用
4.1 國際硬度測試基于在規定條件下,對硬球在橡膠樣品中的滲透深度進行測量。測得的滲透深度再轉化成為IRHD單位,選擇比例,0代表材料的彈性模量為0,且100%代表材料有無限的彈性模量。
4.1.1 在大多數正常硬度范圍內,比例也滿足以下條件:1 IRHD 范圍代表大約楊氏模量中的相同比例差異,且橡膠硫化產品在正常的彈性范圍內,當測試標準樣品時,IRHD的讀數可與類型A的硬度計(測試方法D 2240)讀數做比較。
4.1.1.1 術語“彈力的常規范圍”用于將高速應力松弛或變形滯后作用的合力排除在外。對于此種復合力,在兩種硬度測試上停留時間的不同會導致硬度值的差異(測試方法D2240和D 1415)。當測試曲面的或非常規形狀的測試樣品時,讀數是沒有可比性的。
4.1.2 對于各向同性彈性材料,如:天然硫化橡膠,IRHD的硬度與楊氏模量關系已知,但對于塑料或各向異性的橡膠,與楊氏模量的關系還不夠清楚。
4.1.3 滲透差異與以IRHD表示的硬度之間的關系是基于以下計        算原則的:
4.1.3.1 對于良好的各向同性彈性材料,滲透和楊氏模量之間的關系4如如下:
F/M=1.9 R2(P/R)1..35 (1)
其中:
F = 成穴力,
M = 楊氏模量, MPa,
R = 球半徑, 毫米, 與
P =滲透深度,毫米.
4.1.3.2 使用概率單位(整體正常誤差)曲線相關的log10M和IRHD的硬     度。如圖1所示。曲線定義如下:
4.1.3.3 log10M的值與曲線中點對應,等于0.364,即:M =2.31Pa或
4.1.3.4 最大的斜率等于每單位增加57 IRHD,以log10M表示。
5. 儀器
5.1 以下列出必須使用的部分儀器,適合的尺寸和負載在表1中列出:
5.1.1 立式柱塞,  終止于硬球。
5.1.2 施力器, 用于給球施加次要力和主要力,柱塞以及上附裝置的   質量和彈簧所施加的力上,都應被包含在測定次要力和主要力之內。這是為了測量按規定實際施加在球上的力。
5.1.3 測量裝置—一個機械的,光學的,或電器裝置,使用標準   的長度段位或在施加主要負載力時,用IRHD單位對柱塞的滲透深度的增加進行測量
5.1.4 底部—一個平的環形底部牢牢固定在滲透測量裝置上,  
4本關系是一種近似關系,且可作為一種指示或暗示、
INTERNATIONAL
Designation: D 1415-05
Standard Test Method for
Rubber Property—International Hardness1
This standard is issued under the fixed designation D 1415; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (e) indicates an  editorial change since the last revision or reapproval.
This standard has been approved for use by agencies of the Department of Defense.
1. Scope
1.1 This test method covers a procedure for measuring the hardness of vulcanized or thermoplastic rubber. The hardness
is obtained by the difference in penetration depth of a specified dimension ball under two conditions of contact with the rubber:
(1) with a small initial force and (2) with a much larger final force. The differential penetration is taken at a specified time
and converted to a hardness scale value.
1.2 This test method is technically similar with ISO 48.
1.3 This standard does not purport to address all of the safety concerns,  if any, associated with its use. It is th
responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
2. Referenced Documents
2.1 ASTM Standards: 2
D 1349 Practice for Rubber—Standard Temperatures for Testing D 1415 Test Method for Rubber Property—International
Hardness D 2240 Test  Method  for  Rubber  Property—Durometer Hardness D 4483 Practice for Evaluating Precision for Test Method
Standards in the Rubber and Carbon Black Manufacturing Industries
1 This test method is under the jurisdiction of ASTM Committee D11 on Rubber
and is the direct responsibility of Subcommittee D11.10 on Physical Testing.
Current edition approved Aug. 15, 2005. Published August 2005. Originally approved in 1956. Last previous edition approved in 2004 as D 1415-88 (2004).
2 For referenced ASTM standards, visit the ASTM website,  or
contact ASTM Customer Service. For Annual Book of ASTM Standards volume information, refer to the standard's Document Summary page on
the ASTM website.
2.2   International Standard:3
ISO    48 Rubber,    Vulcanized    or    Thermoplastic Determination of Hardness (Hardness between 10 and 100
IRHD)
3. Summary of Test Methods
3.1 Four procedures are given to accommodate specimens of different dimensions hardness of vulcanized or thermoplas¬tic rubbers on flat surfaces:
Type S1 and S2, Standard hardness tests; Type M, Micro-hardness tests; Type L, Low hardness test; Type H, High hardness test.
3.1.1 Types S1 and S2 (refer to Table 1)—The standard test for hardness is the appropriate method for specimens having a
thickness described in Section 6, and is appropriate for those having a hardness of 35 IRHD to 85 IRHD. It may be used for
those in the range of 30 IRHD to 95 IRHD.
NOTE 1—The hardness values obtained by Types S and S1, within the ranges of 85 IRHD to 95 IRHD and 30 IRHD to 35 IRHD may not agree with those obtained using Types H or L. The differences are not generally considered significant.
3.1.2 Type M (refer to Table 1)—The micro-hardness test is a scaled-down version of Type S1 and S2, which permit testing
of thinner and smaller specimens. It is applicable for specimens having a thickness described in Section 6, and a hardness of 35
IRHD to 85 IRHD. It may be used for those in the range of 30 IRHD to 95 IRHD.
NOTE 2—The hardness values obtained by Type M may not agree with those obtained using Types S1 or S2 due to the effects of surface variations or specimen configuration.
3 Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036.
Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.
D 1415-05
TABLE 1 Apparatus Requirements
 NOTE—In Type M micro-hardness testing using instruments in which the test piece table is pressed upwards by a spring, the value of the force on foot is that

acting during the period of application of the total indenting force. Before the indenting force increment of 0.145 N is applied, the force on the foot is greater by this amount, and hence is 0.38 6 0.03 N.
 Type S1 Type S2 Type M Type L Type H
Diameter of ball, 2.38 6 0.01 2.50 6 0.01 0.395 6 0.005 5.0 6 0.01 1.0 6 0.01
mm     
Minor force on ball, 0.30 6 0.02 0.29 6 0.02 0.00836 0.0005 0.3 6 0.02 0.3 6 0.02
NA     
Major force on ball, 5.23 6 0.01 5.4 6 0.01 0.1455 6 0.0005 5.4 6 0.01 5.4 6 0.01
Total force on ball, 5.53 6 0.03 5.7 6 0.03 0.153 6 0.001 5.7 6 0.03 5.7 6 0.03
NA     
Outside diameter of 20 6 1 20 6 1 13.356 0.15 22 6 1.0 20 6 1.0
foot, mm     
Inside diameter of 6 6 1 6 ± 1 11.006 0.15 10 6 1.0 6 6 1.0
foot, mm     
Force on foot, NB 8.3 6 1.5 8.3 6 1.5 0.2356 0.03C 8.3 6 1.5 8.3 6 1.5
A Includes frictional forces in apparatus.
BThe force should be adjusted within these limits to the actual area of the foot so that the pressure in the specimen is 30 6 0.5 kPa.
C Force on foot during application of total force on ball; force on foot during application of minor force on ball, 0.2 N minimum, 0.4 N maximum.
 
3.1.3 Type L—The appropriate method for specimens having a thickness described in Section 6, and a hardness of 10
IRHD to 35 IRHD.
3.1.4 Type H—The appropriate method for specimens having a thickness described in Section 6, and a hardness of 85
IRHD to 100 IRHD.
3.2 In all procedures, the hardness in International Rubber Hardness Degrees (IRHD) is derived from the difference in penetrations and a table or graph constructed from the table. In the micro-tester procedure, the difference in penetration must first be multiplied by scale factor 6. Alternatively, the penetration measuring instrument may be calibrated directly in IRHD.
4. Significance and Use
4.1 The International Hardness test is based on measure¬ment of the penetration of a rigid ball into the rubber specimen under specified conditions. The measured penetration is con¬verted into IRHD, the scale of degrees being so chosen that 0 represents a material having an elastic modulus of zero, and 100 represents a material of infinite elastic modulus.
4.1.1 The scale also fulfills the following conditions over most of the normal range of hardness:  one IRHD range
represents approximately the same proportionate difference in Young's modulus, and for rubber vulcanizates in the usual
range of resilience, readings in IRHD are comparable with
those given by a Type A durometer (Test Method D 2240)
when testing standard specimens.
 4.1.1.1 The term "usual range of resilience" is used to exclude those compounds that have unusually high rates of stress relaxation or deformational

 hysteresis. For such com¬pounds, differences in the dwell time in the two hardness tests (Test Methods D 2240 and D 1415) result in differences in hardness

values. Readings may not be comparable when testing curved or irregularly shaped test specimens.
4.1.2 For substantially elastic isotropic materials like well-
vulcanized natural rubbers, the hardness in IRHD bears a
known relation to Young's modulus, although for markedly
plastic or anisotropic rubbers the relationship will be less
precisely known.
4.1.3 The relation between the difference of penetration and the hardness expressed in IRHD is based on the following:
4.1.3.1 The relation4 between penetration and Young's modulus for a perfectly elastic isotropic material:
(1)
F/M 5 1.9 R2~P/R!1.35
where:
F     =  indenting force,
M    =  Young's modulus, MPa,
R     = radius of ball, mm, and
P     = penetration, mm.
4.1.3.2 Use of a probit (integrated normal error) curve to
relate log10 M and hardness in IRHD, as shown in Fig. 1. This
curve is defined as follows:
4.1.3.3 The value of log10 M corresponding to the midpoint
of the curve is equal to 0.364, that is, M = 2.31 MPaor335psi.
4.1.3.4 The maximum slope is equal to 57 IRHD per unit
increase in log10 M.
5. Apparatus
5.1 The essential parts of the apparatus are as follows, the appropriate dimensions and loads being given in Table 1:
5.1.1 Vertical Plunger, terminating in a rigid ball.
5.1.2 Force Applicator, for applying a minor force and a major force to the ball, the mass of the plunger, and of any
fittings attached to it, and the force of any spring acting on it shall be included in determining the minor and major forces.
This is in order that the forces actually applied to the ball shall be as specified.
5.1.3 Measuring Device—A mechanical, optical, or electrical device graduated either in standard units of length or in
 IRHD for measuring the increase in depth of penetration of the plunger caused by the major load.

2013.1.1 

  返回>>Top
-x